
IDD HOMEWORK 2: TEXT INPUT DEVICE

BrailleKey
Designing a travel-sized text input device for the visually impaired

Implemented by Michelle Chang



GitHub Repository: https://github.com/mimilei/hw2_mimilei_braillekey

Demo Video: https://youtu.be/lI9pNwTxQsE	

BrailleKey is a physical text-entry interface for braille. The text-entry technique 
employed mimics the existing set of English alphabet characters used by the 
visually impaired, allowing users to form alphanumeric characters via the six dots 
that define the braille code system. It is in part based on a number of existing 
braille keyboards that involve users pressing keys simultaneously on a board of 
spread-out switches (the appearance is similar to a QUERTY keyboard, but with 
only four keys per hand). 

Each braille character is made up of a specific pattern of six dots. Each dot can 
either be filled or empty. The dots are numbered as follows:

Introducing, BrailleKey

The code powering BrailleKey is quite simple. It assigns eight of the Duo’s ports 
to eight different keys: braille dots one through six, the space key, and the new-
line key. 

In setup(): 
The speed of the serial is set to 9600 and all ports corresponding to a key are 
specified as INPUT_PULLDOWN for their pinMode. 

The Code

Accordingly, BrailleKey has a button for each dot. The user’s right hand controls 
dots four through six, and the user’s left hand controls dots one through three. 
BrailleKey also has additional space key (right hand) and newline keys (left hand), 
which are controlled by the user’s thumbs. 

I opted to implement this system because I wanted to explore systems of in-
put for less mainstream target users. This was partly inspired by the videos we 
watched on the first day of class, detailing the many problems in the lives of 
those with health issues, and the emphasis the instructors have put on design-
ing devices to make the lives of others easier. In brainstorming for this project, I 
realized that I know next to nothing about how visually impaired people interact 
with computers and mobile phones, and wanted to learn more about creating a 
text input device that is both familiar to and convenient for this user group.

1

2

3

4

5

6



BrailleKey’s physical design is crafted to feel somewhat natural and to suggest 
the potential for portability. While many visually impaired people today do use 
the classic QWERTY keyboard, with the full set of alphanumeric characters, the 
classic braille code does have the advantage of using less keys. This makes 
classic braille an interesting option for a portable text input system, possibly for 
mobile devices. It also has the advantage of being familiar to the blind, since 
most visually impaired people know how to read braille. 

Since a physical device for the visually impaired should be as haptically distinct 
as possible, I envisioned an interface that can be held in each hand and easily 
reached by the fingers. Such a system is small, fairly unobtrusive, and using cur-
rent technology and very thin switches, could likely be reduced to the thickness 
of a piece of paper. Although the prototype is wired to the microcontroller, a 
more polished version could potentially communicate wirelessly. 

Designing the Physical Device

Brainstorming: Design Iterations

During the planning process, BrailleKey was first conceptualized as two wooden 
boards with three buttons (for the six dots) on each. They were to be mounted 
on Adafruit protoboards. However, after some thought, I came to the conclusion 
that such an arrangement would be rather clunky and defeat the purpose of cre-
ating a lightweight, portable keyboard. 

In loop(): 
In braille, every letter of the English alphabet is assigned a certain pattern of 
dots (there are six total). The input system employed by BrailleKey requires the 
user to press the specific pattern of dots for a character simultaneously (or as 
simultaneously as possible). In every iteration of the loop, the digital value of 
every single key is read and saved. Through a series of if statements, the loop 
compares the pattern of dots entered by the user with the existing dot patterns 
in the braille system. If there is a match, then the corresponding letter is printed 
out to Serial. Similarly, if the system detects that the space key or the newline 
key have been pressed (that is, its value is HIGH), a space or newline character 
is printed to Serial. If the user’s input pattern is not recognized by the program, 
then nothing happens. The loop implements a delay of 200 milliseconds be-
tween iterations. 



Next, I tried a more compact design that resembles Wii controllers or the han-
dles of a bicycle. The user’s fingers should be able to curl naturally around the 
device so that the curve of the fingers fall comfortably on top of the keys. The 
base of the user’s thumb should be able to rest comfortably on the top edge of 
the handles, so that all users have to do to press the newline or space keys is to 
straighten the thumb so that the base of the bone hits the key. 

The hand grips in the final prototype consist of 
two laser-cut pieces of wood glued together, to 
create greater thickness. Much of the final proto-
type resembles the above diagram, except for the 
fact that there are no button caps. This is because, 
given the size at which the handles were cut at 
and the depth of the grooves in the handles, 
button caps would protrude unnaturally far from 
the main body of the handles and likely act as 
more of an obstruction than an aid. Input is read 
via push-button switches soldered to copper tape 
and attached to the main breadboard by wiring.



The finished product, 
complete with a braille 
alphabet reference for 
those who wish to try the 
device but do not know 
braille. 



123
newline

space
456

The following is a depiction of the electronics when set on a breadboard: 

I learned a lot (and had a ton of fun) doing this assignment. I was actually ex-
tremely nervous and worried before beginning because I’ve never built a “com-
plete” device by myself before, and had no exact mental model or experience 
to draw upon regarding messing with switches and bending them to my will. 
Some new things I learned and encountered include preparing wires to for pro-
totyping (twisting, tinning), using a multimeter to test for good connections, and 
designing and crafting a device for handheld operation. This project was great 
practice for refreshing my soldering and electrical skills.

I’ve learned a lot about how to improve my design from this first prototype. 
(There are actually more problems with my idea than I initially expected!) Al-
though I tried to create a device that felt natural, it in fact feels rather awkward 
in practice. As it turns out, pressing buttons with just the curve of your finger is 
rather difficult and feels strange. The sizing of the wooden grips probably need 
to be tailored to the user. I found that I would prefer them a little bigger and 
more spread out, as my hands felt rather cramped after using the device for a 
while. In practice, there would probably be different devices for different hand 
sizes (rather like clothing). My roommate, whose hands are smaller than mine, 
tried the device and found it just right. 

Another important thing I learned is that the method of text input I chose (press-
ing the right pattern of buttons simultaneously) requires a lot of coordination 
and concentration (most people don’t have a lot of practice using both their in-
dex and ring fingers at the same time). Part of this may be due to the lack of key 
covers on top of the switches. Key covers increase the surface area accessible 
to the user, so that they have to put less effort into key presses. However, much 
of the issue lies in the fact that key presses must be purposeful and backed with 
sufficient force. Just pressing keys casually often leads to the system misinter-
preting the user’s intentions because the force is often too light in certain areas. 
Because users must not only press more than one key simultaneously, but also 

Reflection & Future Improvements



put the same amount of effort into each finger, the system puts more strain on 
users overall than the classic QWERTY keyboard. More sensitive switches might 
help with this. 

Some great ways to expand on this device include:
1.	 Adding a delete function.
2.	 Adding a text-to-voice feature. After text is entered, the system will read the 

message back to the user so they can make corrections as needed. Without 
haptic feedback, the only other way for the visually impaired to easily correct 
their input is to hear it read back to them.

3.	 Redesign the grips to fit more naturally with the human hand.

Overall, I thought this assignment was just the right amount of challenging and 
enjoyable. I picked up a lot of new information regarding technology for the 
visually impaired in the midst of the Mobile Revolution. I found Stanford’s braille 
keyboard for the iPad to be quite interesting. The assignment felt difficult and 
worrying at times, but not so much so that I felt like falling into despair!


